Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4016, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740890

RESUMEN

Two-dimensional (2D) materials have garnered significant attention in recent years due to their atomically thin structure and unique electronic and optoelectronic properties. To harness their full potential for applications in next-generation electronics and photonics, precise control over the dielectric environment surrounding the 2D material is critical. The lack of nucleation sites on 2D surfaces to form thin, uniform dielectric layers often leads to interfacial defects that degrade the device performance, posing a major roadblock in the realization of 2D-based devices. Here, we demonstrate a wafer-scale, low-temperature process (<250 °C) using atomic layer deposition (ALD) for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. ALD deposition temperatures between 125 and 250 °C result in stoichiometric films with high oxidative stability, yielding a dielectric strength of 8.2 MV/cm. Utilizing a seed-free ALD approach, we form uniform aBN dielectric layers on 2D surfaces and fabricate multiple quantum well structures of aBN/MoS2 and aBN-encapsulated double-gated monolayer (ML) MoS2 field-effect transistors to evaluate the impact of aBN dielectric environment on MoS2 optoelectronic and electronic properties. Our work in scalable aBN dielectric integration paves a way towards realizing the theoretical performance of 2D materials for next-generation electronics.

2.
ACS Nanosci Au ; 4(2): 115-127, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38644964

RESUMEN

Two-dimensional (2D) materials are popular for fundamental physics study and technological applications in next-generation electronics, spintronics, and optoelectronic devices due to a wide range of intriguing physical and chemical properties. Recently, the family of 2D metals and 2D semiconductors has been expanding rapidly because they offer properties once unknown to us. One of the challenges to fully access their properties is poor stability in ambient conditions. In the first half of this Review, we briefly summarize common methods of preparing 2D metals and highlight some recent approaches for making air-stable 2D metals. Additionally, we introduce the physicochemical properties of some air-stable 2D metals recently explored. The second half discusses the air stability and oxidation mechanisms of 2D transition metal dichalcogenides and some elemental 2D semiconductors. Their air stability can be enhanced by optimizing growth temperature, substrates, and precursors during 2D material growth to improve material quality, which will be discussed. Other methods, including doping, postgrowth annealing, and encapsulation of insulators that can suppress defects and isolate the encapsulated samples from the ambient environment, will be reviewed.

3.
Nat Commun ; 15(1): 3556, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670956

RESUMEN

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

4.
ACS Nano ; 18(12): 8876-8884, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38497598

RESUMEN

Graphene-enhanced Raman scattering (GERS) offers great opportunities to achieve optical sensing with a high uniformity and superior molecular selectivity. The GERS mechanism relies on charge transfer between molecules and graphene, which is difficult to manipulate by varying the band alignment between graphene and the molecules. In this work, we synthesized a few atomic layers of metal termed two-dimensional (2D) metal to precisely and deterministically modify the graphene Fermi level. Using copper phthalocyanine (CuPc) as a representative molecule, we demonstrated that tuning the Fermi level can significantly improve the signal enhancement and molecular selectivity of GERS. Specifically, aligning the Fermi level of graphene closer to the highest occupied molecular orbital (HOMO) of CuPc results in a more pronounced Raman enhancement. Density functional theory (DFT) calculations of the charge density distribution reproduce the enhanced charge transfer between CuPc molecules and graphene with a modulated Fermi level. Extending our investigation to other molecules such as rhodamine 6G, rhodamine B, crystal violet, and F16CuPc, we showed that 2D metals enabled Fermi level tuning, thus improving GERS detection for molecules and contributing to an enhanced molecular selectivity. This underscores the potential of utilizing 2D metals for the precise control and optimization of GERS applications, which will benefit the development of highly sensitive, specific, and reliable sensors.

5.
Nat Commun ; 15(1): 2738, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548739

RESUMEN

The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2 by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized. Vac S - 1 as well as Re Mo 0 and Re Mo - 1 exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.

6.
ACS Appl Mater Interfaces ; 16(2): 2902-2911, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166373

RESUMEN

Monolayer transition metal dichalcogenides have strong intracovalent bonding. When stacked in multilayers, however, weak van der Waals interactions dominate interlayer mechanical coupling and, thus, influence their lattice vibrations. This study presents the frequency evolution of interlayer phonons in twisted WS2 bilayers, highly subject to the twist angle. The twist angle between the layers is controlled to modulate the spacing between the layers, which, in turn, affects the interlayer coupling that is probed by Raman spectroscopy. The shifts of high-frequency E2g1 (Γ) and A1g (Γ) phonon modes and their frequency separations are dependent on the twist angle, reflecting the correlation between the interlayer mechanical coupling and twist angle. In this work, we fabricated large-area, twisted bilayer WS2 with a clean interface with controlled twist angles. Polarized Raman spectroscopy identified new interlayer modes, which were not previously reported, depending on the twist angle. The appearance of breathing modes in Raman phonon spectra provides evidence of strong interlayer coupling in bilayer structures. We confirm that the twist angle can alter the exciton and trion dynamics of bilayers as indicated by the photoluminescence peak shift. These large-area controlled twist angle samples have practical applications in optoelectronic device fabrication and twistronics.

7.
Nature ; 625(7995): 494-499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233619

RESUMEN

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

8.
ACS Appl Mater Interfaces ; 16(5): 6644-6652, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38264996

RESUMEN

Synthesis of large-area transition-metal dichalcogenides (TMDs) with controlled orientation is a significant challenge to their industrial applications. Substrate plays a vital role in determining the final quality of monolayer materials grown via the chemical vapor deposition process by controlling their orientation, crystal structure, and grain boundary. This study determined the binding energy and equilibrium distance for tungsten diselenide (WSe2) monolayers on crystalline and amorphous silicon dioxide and aluminum dioxide substrates. Differently oriented WSe2 monolayers are considered to investigate the role of the substrate in the orientation, binding strength, and equilibrium distance. This study can pave the way to synthesizing high-quality two-dimensional (2D) materials for electronic and chemical applications.

9.
Small ; 20(11): e2306554, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919862

RESUMEN

Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de-intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic-scale reactive molecular dynamics simulations. By PEEM, de-intercalation "windows" (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de- and re-intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s-1 ± 0.2 nm s.-1 In contrast, the de-intercalation of Ga is irreversible with faster kinetics that are influenced by the non-circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de-intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation.

10.
ACS Nano ; 17(23): 23422-23429, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37976219

RESUMEN

Charged dopants in 2D transition metal dichalcogenides (TMDs) have been associated with the formation of hydrogenic bound states, defect-bound trions, and gate-controlled magnetism. Charge-transfer at the TMD-substrate interface and the proximity to other charged defects can be used to regulate the occupation of the dopant's energy levels. In this study, we examine vanadium-doped WSe2 monolayers on quasi-freestanding epitaxial graphene, by high-resolution scanning probe microscopy and ab initio calculations. Vanadium atoms substitute W atoms and adopt a negative charge state through charge donation from the graphene substrate. VW-1 dopants exhibit a series of occupied p-type defect states, accompanied by an intriguing electronic fine-structure that we attribute to hydrogenic states bound to the charged impurity. We systematically studied the hybridization in V dimers with different separations. For large dimer separations, the 2e- charge state prevails, and the magnetic moment is quenched. However, the Coulomb blockade in the nearest-neighbor dimer configuration stabilizes a 1e- charge state. The nearest-neighbor V-dimer exhibits an open-shell character for the frontier defect orbital, giving rise to a paramagnetic ground state. Our findings provide microscopic insights into the charge stabilization and many-body effects of single dopants and dopant pairs in a TMD host material.

11.
ACS Appl Mater Interfaces ; 15(40): 47649-47660, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782678

RESUMEN

Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.

12.
Nanoscale Adv ; 5(20): 5601-5612, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37822905

RESUMEN

Two-dimensional metals stabilized at the interface between graphene and SiC are attracting considerable interest thanks to their intriguing physical properties, providing promising material platforms for quantum technologies. However, the nanoscale picture of the ultrathin metals within the interface that represents their ultimate two-dimensional limit has not been well captured. In this work, we explore the atomic structures and electronic properties of atomically thin indium intercalated at the epitaxial graphene/SiC interface by means of cryogenic scanning tunneling microscopy. Two types of surfaces with distinctive crystalline characteristics are found: (i) a triangular indium arrangement epitaxially matching the (√3 × âˆš3)R30° cell of the SiC substrate and (ii) a featureless surface of more complex atomic structures. Local tunneling spectroscopy reveals a varying n-type doping in the graphene capping layer induced by the intercalated indium and an occupied electronic state at ∼-1.1 eV that is attributed to the electronic structure of the newly formed interface. Tip-induced surface manipulation is used to alter the interfacial landscape; indium atoms are locally de-intercalated below graphene. This enables the quantitative measurement of the intercalation thickness revealing mono and bi-atomic layer indium within the interface and offers the capability to tune the number of metal layers such that a monolayer is converted irreversibly to a bilayer indium. Our findings demonstrate a scanning probe-based method for in-depth investigation of ultrathin metal at the atomic level, holding importance from both fundamental and technical viewpoints.

13.
ACS Nano ; 17(20): 19709-19723, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812500

RESUMEN

n-type field effect transistors (FETs) based on two-dimensional (2D) transition-metal dichalcogenides (TMDs) such as MoS2 and WS2 have come close to meeting the requirements set forth in the International Roadmap for Devices and Systems (IRDS). However, p-type 2D FETs are dramatically lagging behind in meeting performance standards. Here, we adopt a three-pronged approach that includes contact engineering, channel length (Lch) scaling, and monolayer doping to achieve high performance p-type FETs based on synthetic WSe2. Using electrical measurements backed by atomistic imaging and rigorous analysis, Pd was identified as the favorable contact metal for WSe2 owing to better epitaxy, larger grain size, and higher compressive strain, leading to a lower Schottky barrier height. While the ON-state performance of Pd-contacted WSe2 FETs was improved by ∼10× by aggressively scaling Lch from 1 µm down to ∼20 nm, ultrascaled FETs were found to be contact limited. To reduce the contact resistance, monolayer tungsten oxyselenide (WOxSey) obtained using self-limiting oxidation of bilayer WSe2 was used as a p-type dopant. This led to ∼5× improvement in the ON-state performance and ∼9× reduction in the contact resistance. We were able to achieve a median ON-state current as high as ∼10 µA/µm for ultrascaled and doped p-type WSe2 FETs with Pd contacts. We also show the applicability of our monolayer doping strategy to other 2D materials such as MoS2, MoTe2, and MoSe2.

14.
ACS Nano ; 17(16): 15629-15640, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37534591

RESUMEN

Substitutionally doped 2D transition metal dichalcogenides are primed for next-generation device applications such as field effect transistors (FET), sensors, and optoelectronic circuits. In this work, we demonstrate substitutional rhenium (Re) doping of MoS2 monolayers with controllable concentrations down to 500 ppm by metal-organic chemical vapor deposition (MOCVD). Surprisingly, we discover that even trace amounts of Re lead to a reduction in sulfur site defect density by 5-10×. Ab initio models indicate the origin of the reduction is an increase in the free-energy of sulfur-vacancy formation at the MoS2 growth-front when Re is introduced. Defect photoluminescence (PL) commonly seen in undoped MOCVD MoS2 is suppressed by 6× at 0.05 atomic percent (at. %) Re and completely quenched with 1 at. % Re. Furthermore, we find that Re-MoS2 transistors exhibit a 2× increase in drain current and carrier mobility compared to undoped MoS2, indicating that sulfur vacancy reduction improves carrier transport in the Re-MoS2. This work provides important insights on how dopants affect 2D semiconductor growth dynamics, which can lead to improved crystal quality and device performance.

15.
ACS Nano ; 17(15): 14449-14460, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490390

RESUMEN

Defects play a pivotal role in limiting the performance and reliability of nanoscale devices. Field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors such as monolayer MoS2 are no exception. Probing defect dynamics in 2D FETs is therefore of significant interest. Here, we present a comprehensive insight into various defect dynamics observed in monolayer MoS2 FETs at varying gate biases and temperatures. The measured source-to-drain currents exhibit random telegraph signals (RTS) owing to the transfer of charges between the semiconducting channel and individual defects. Based on the modeled temperature and gate bias dependence, oxygen vacancies or aluminum interstitials are probable defect candidates. Several types of RTSs are observed including anomalous RTS and giant RTS indicating local current crowding effects and rich defect dynamics in monolayer MoS2 FETs. This study explores defect dynamics in large area-grown monolayer MoS2 with ALD-grown Al2O3 as the gate dielectric.

16.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37219929

RESUMEN

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

17.
Nano Lett ; 23(8): 3426-3434, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37058411

RESUMEN

Two-dimensional (2D) semiconductors possess promise for the development of field-effect transistors (FETs) at the ultimate scaling limit due to their strong gate electrostatics. However, proper FET scaling requires reduction of both channel length (LCH) and contact length (LC), the latter of which has remained a challenge due to increased current crowding at the nanoscale. Here, we investigate Au contacts to monolayer MoS2 FETs with LCH down to 100 nm and LC down to 20 nm to evaluate the impact of contact scaling on FET performance. Au contacts are found to display a ∼2.5× reduction in the ON-current, from 519 to 206 µA/µm, when LC is scaled from 300 to 20 nm. It is our belief that this study is warranted to ensure an accurate representation of contact effects at and beyond the technology nodes currently occupied by silicon.

18.
ACS Appl Mater Interfaces ; 15(12): 15785-15796, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926818

RESUMEN

Electric-double-layer (EDL) gating can induce large capacitance densities (∼1-10 µF cm-2) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage (VG) that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied VG without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which VG is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 1013 cm-2 for electrons and 1.4 × 1013 cm-2 for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO4, is decreased from 1 µm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm-1 µm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.

19.
Nat Mater ; 22(5): 570-575, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781950

RESUMEN

The introduction of superconductivity to the Dirac surface states of a topological insulator leads to a topological superconductor, which may support topological quantum computing through Majorana zero modes1,2. The development of a scalable material platform is key to the realization of topological quantum computing3,4. Here we report on the growth and properties of high-quality (Bi,Sb)2Te3/graphene/gallium heterostructures. Our synthetic approach enables atomically sharp layers at both hetero-interfaces, which in turn promotes proximity-induced superconductivity that originates in the gallium film. A lithography-free, van der Waals tunnel junction is developed to perform transport tunnelling spectroscopy. We find a robust, proximity-induced superconducting gap formed in the Dirac surface states in 5-10 quintuple-layer (Bi,Sb)2Te3/graphene/gallium heterostructures. The presence of a single Abrikosov vortex, where the Majorana zero modes are expected to reside, manifests in discrete conductance changes. The present material platform opens up opportunities for understanding and harnessing the application potential of topological superconductivity.

20.
ACS Nano ; 17(1): 230-239, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36580283

RESUMEN

Ultrathin 2D-GaNx can be formed by Ga intercalation into epitaxial graphene (EG) on SiC followed by nitridation in ammonia. Defects in the graphene provide routes for intercalation, but the nature and role of the defects have remained elusive. Here we examine the influence of graphene layer thickness and chemical functionalization on Ga intercalation and 2D-GaNx formation using a combination of experimental and theoretical studies. Thin buffer layer regions of graphene near steps on SiC readily undergo oxygen functionalization when exposed to air or a He/O2 plasma in contrast to thicker regions which are not chemically modified. Oxygen functionalization is found to inhibit Ga intercalation leading to accumulation of Ga droplets on the surface. In contrast, Ga readily intercalates between EG and SiC in the thicker graphene regions that do not contain oxygen. When NH3 annealing is carried out immediately after Ga exposure, 2D-GaNx formation is observed only in the oxygen-functionalized regions, and Ga intercalated under thicker nonfunctionalized graphene does not convert to GaNx. Density functional theory calculations demonstrate that oxygen functionalization of graphene alters the binding energy of Ga and NH3 species to the graphene surface. The presence of hydroxyl groups on graphene inhibits binding of Ga to the surface; however, it enhances the chemical reactivity of the graphene surface to NH3 which, in turn, enhances Ga binding and facilitates the formation of 2D-GaNx. By modifying the EG process to produce oxygen-functionalized buffer layer graphene, uniformly intercalated 2D-GaNx is obtained across the entire substrate surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA